

Evaluation of the intact nephron hypothesis using design methodology

School of Pharmacy, University of Otago

Intact nephron hypothesis

- Theory underpinning this practice is the intact nephron hypothesis (INH)
- Studies designed to test the INH do not generally consider optimization of design factors

Aim

- To construct an optimal study design that serves the dual purpose
- 1. robust for parameter estimation
- 2. discrimination between models for linear (INH) and non-linear (non-INH) renal drug handling

Methods

- Standard two-stage method common for Phase I studies
- Reviewed relationship between CL_R and GFR
- Design space: range of GFR across study population
- Models for CL_R:

M1: $CL_R = \theta_1 \cdot GFR$ M2: $CL_R = \theta_1 \cdot GFR^{\theta_2}$

Simulation and Estimation Study

Performance evaluation: Power, precision & bias

Estimations: based on M1 & M2

Optimal design

- Robust compound optimality criterion:
- 1. Hypercube In D optimality criterion, robust design to account for parameter uncertainty
- 2. Ds optimality criteria, discriminatory design between nested models

Results

Conclusion

- A standard sample size of 24 subjects was adequate to estimate parameters precisely
- Optimal design was efficient, requiring subjects from only three renal function groups

