Evaluation of assumptions underpinning pharmacometric models Qing Xi Ooi¹, Daniel Wright¹, Geoffrey Isbister², Stephen Duffull¹ School of Pharmacy, University of Otago, Dunedin, New Zealand School of Medicine and Public Health, The University of Newcastle, Newcastle, Australia #### Models and assumptions - All models are underpinned by assumptions - The validity of model inference depends on: - Appropriateness - Likely impact of the underlying assumptions ### Importance of assumption evaluation #### Guidance for Industry Population Pharmacokinetics FDA. 1999; https://www.fda.gov/downloads/drugs/guidances/UCM072137.pdf # Guideline on Reporting the Results of Population Pharmacokinetic Analyses EMEA. 2007; http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/ 09/WC500003067.pdf Good Practices in Model-Informed Drug Discovery and Development: Practice, Application, and Documentation EFPIA MID3 Workgroup et al., CPT Pharmacometrics Syst Pharmacol. 2016;5(3):93-122 #### Other published guidelines # Inadequate documentation and evaluation 4/18 of assumptions - Assumptions are not routinely addressed in published literature - Regulatory perspective (EMA/EFPIA M&S workshop in 2011): - Limitation of analysis submitted for regulatory review - A lack of transparent description of influential assumptions - Barrier for effective model use and regulatory review EFPIA MID3 Workgroup et al., CPT Pharmacometrics Syst Pharmacol. 2016;5(3):93-122 ### **Existing framework** WHITE PAPER #### Good Practices in Model-Informed Drug Discovery and Development: Practice, Application, and Documentation EFPIA MID3 Workgroup: SF Marshall^{1*}, R Burghaus², V Cosson³, SYA Cheung⁴, M Chenel⁵, O DellaPasqua⁶, N Frey³, B Hamrén⁷, L Harnisch¹, F Ivanow⁸, T Kerbusch⁹, J Lippert², PA Milligan¹, S Rohou¹⁰, A Staab¹¹, JL Steimer¹², C Tornøe¹³ and SAG Visser¹⁴ EFPIA MID3 Workgroup et al., CPT Pharmacometrics Syst Pharmacol. 2016;5(3):93-122 **Assumption Testing in Population Pharmacokinetic** Models: Illustrated with an Analysis of Moxonidine **Data from Congestive Heart Failure Patients** Mats O. Karlsson, 1,4 E. Niclas Jonsson, 1 Curtis G. Wiltse, 2 and Janet R. Wade³ Documentation of assumptions How to assess assumptions? #### Aim • To formalise a framework for evaluating assumptions intrinsic to a top-down or bottom-up pharmacometric model ### Classification of assumptions - According to the origin of the assumption - Implicit: - Theorem-based - e.g. Pearson correlation → linearity - Explicit: - Arises from a gap in knowledge that requires imputation - e.g. Heuristic solution to an unknown system → Michaelis-Menten model # Evaluation against an <u>internal</u> aim (of model building) # Evaluation against an <u>external</u> aim (i.e. model use) ### Impact of assumption violation, I ## Probability of assumption violation, P ### Application - Top-down example - To develop a K-PD model for warfarin and vitamin K-dependent coagulation proteins - Bottom-up example - Factor VII-based method for INR prediction based on a QSP coagulation network model # Explicit assumption: Daily dose time of 6pm # Implicit assumption: $\varepsilon \sim N(0, \sigma^2)$ # Assumption: Linear PD model (<u>External</u> aim) #### Discussion - A flowchart for systematic evaluation of assumptions is proposed - Application to top-down (and bottom-up) models - The next step: - Apply the flowchart to other settings - To fully assess its applicability and practicality in assumption evaluation ### Acknowledgements - University of Otago Doctoral Scholarship - School of Pharmacy, University of Otago - Otago Pharmacometrics Group - Clinical Research Centre, Ministry of Health Malaysia