

Weight-HbA1c-Insulin-Glucose (WHIG) Model for long term disease progression of Type 2 Diabetes

Steve Choy, Maria C Kjellsson, Mats O Karlsson, Willem de Winter

Pharmacometrics Research Group

Department of Pharmaceutical Biosciences

Uppsala University

Sweden

Background – T2DM

 At its simplest, T2DM is defined by a malfunctioning of the glucose-insulin homeostasis, caused by insulin secretion deficiency (Beta-cell dysfunction) and insulin resistance

Nature & nurture

Important biomarkers

Insulin

- hormone synthesized by the β -cells in pancreas
- Fasting Serum Insulin (FSI) for long term studies

Glucose

- Fasting Plasma Glucose (FPG) measured in the fasted state for 8+ hours
- Glycated haemoglobin A_{1c} (HbA1c, %)
 - Fraction of glycated haemoglobin of all haemoglobin, reflecting glucose exposure over a prolonged period of time (2-3 months)

Weight (kg)

- In long term studies, weight often varies
- Weight change is linked to insulin sensitivity¹

Rece

Effec

the

base

descr

В-се

cody

back

(FSI

A Mechanism-based Disease Progression Model for Comparison of Long-term Effects of Pioglitazone, Metformin and Gliclazide on Disease Processes Underlying Type 2 Diabetes Mellitus

Willem de Winter, ¹ Joost DeJongh, ^{1,2} Teun Post, ¹ Bart Ploeger, ^{1,2} Richard Urquhart, ³ Ian Moules, ³ David Eckland, ³ and Meindert Danhof ^{1,2,4}

"... There is a need to integrate information on long-term FPG, FSI, HbA1c data into a single comprehensive, physiologically meaningful model structure"

ation of chanismbility to loss of pharmatic feedi insulin d hemo-

globih A_{1C} (110 A_{1C}). Imis model was developed on data from two paramet one-year studies comparing the effects of pioglitazone relative to metformin or sulfonylurea treatment in 2408 treatment-naïve T2DM patients. It was found that the model provided accurate descriptions of the time-courses of FPG and HbA_{1C} for different treatment arms. It allowed the identification of the long-term effects of different treatments on loss of β -cell function and insulin-sensitivity, independently from their immediate anti-hyperglycemic effects modeled at their specific sites of action. Hence it avoided the confounding of these effects that is inherent in point estimates of β -cell function and insulin-sensitivity such as the widely used HOMA-%B and HOMA-%S. It was also found that metformin therapy did not result in a reduction in FSI levels in conjunction with reduced FPG levels, as expected for an insulin-sensitizer, whereas pioglitazone therapy did. It is concluded that, although its current implementation leaves room for further improvement, the mechanism-based approach presented here

Linked turnover models

Integration of weight as a predictor for insulin sensitivity

Study design

181 newly diagnosed T2DM Swedish obese patients (mean 104kg) with controlled diet, treatment naive

72 week study:

- 5+6 weeks pre-enrollment and run-in
- 8 weeks titration phase + 52 weeks maintenance dose phase
- 2 weeks down titration and 4 weeks off treatment then final visit

Results – effect of weight change (dWT) on insulin sensitivity (IS)

- The estimated baseline values for beta-cell function (BF) and insulin sensitivity (IS) was 32.1% and 7.5% of normal, respectively
- At the end of the study, the mean gain in IS due to dWT (mean -4.1kg decrease) was estimated to be 45%

Results – VPC: WGT

Results – VPC: FSI

Results – VPC: FPG

Results – VPC: HbA1c

Conclusions

- Weight change as an effector for insulin sensitivity has been successfully integrated on the semi-mechanistic disease progression model for T2DM
- Weight loss resulting from D&E has a positive effect on regaining IS, leading to decreased FPG and HbA1c
- Adequate prediction of the elevation for FPG and HbA1c levels at the end of the study validates the WHIG model's ability to model disease progression of T2DM

Beta-cell function decreases over time

 Beta-cell function is modeled as an empirical function that first rises and then decreases with time

Future direction

- Implement more mechanistic components into the model based on known physiology, e.g. Replace empirical beta-cell function as a function of time
- Test the model on different demographics:
 - Non-obese
 - Chronic diabetics
 - Healthy volunteers

Acknowledgements

- Maria Kjellsson
- Mats Karlsson
- Willem de Winter
- Colleagues from Uppsala University
- Janssen Pharmaceutica

Thank you for listening!

Backup slides

Stratify into High/Low groups FPG

Stratify into High/Low groups FPG

Stratify into High/Low groups HbA1c

Stratify into High/Low groups HbA1c

