Concordance between criteria for covariate model building

Stefanie Hennig
Mats Karlsson
Department of Pharmaceutical Bioscience, Uppsala University
Pharmacometrics Group, School of Pharmacy, The University of Queensland

15 February 2013
Background

- An aim of PK/PD modelling is to establish parameter-covariate relationships
 - Explain variability between individuals
 - Improve the mechanistic understanding
 - Used for dose individualisation
Parameter variability

Explained by covariates

Between subject variability

Unexplained / random

Explained by covariates

Within subject variability

Unexplained / random

Parameter Variability

Introduction | Real data examples | SSEs | Conclusions

PAGANZ 2013
School of Pharmacy, The University of Queensland
Parameter variability

Note: Assumption that PV = EPV+UPV, PV constant
Criteria for covariate inclusion

- Graphical analysis
 - OFV change
- Statistical significance
 - OFV change
- Clinical relevance
 - drop in UPV
 - Assuming PV=UPV+EPV
 - ?change in EPV/PV

- Subjective & not clear cut
- Commonly used as first/main criteria
- Additional criteria
- Not considered

Introduction
Real data examples
SSEs
Conclusions

PAGANZ 2013
School of Pharmacy, The University of Queensland
Aims

1. Explore correlations between these three criteria (ΔEPV, ΔOFV, ΔUPV) in terms of reliability and signal strength, to judge the significance of a covariate inclusion into a model

2. Is there any benefit in monitoring ΔEPV?

3. What happens to PV?
Methods

• 4 real data set examples (RDSs)
 – No BOV
 – No time-variant covariates
 – Covariates assessed only on one parameter
 – Removed covariates from the full model one at a time and in combination

• Stochastic simulations and estimations (SSEs)
Criteria

• **ΔOFV (NONMEM)**

\[ΔOFV = OF_{\text{full}} - OF_{\text{reduced}} \]

• **Absolute UPV, EPV, total PV**

\[\text{UPV} = \left(\sqrt{e^{\omega_P^2}} - 1 \times TVP \right)^2 \]

\(\omega_P^2 \) being the estimated parameter variance and reported by NONMEM in the OMEGA matrix

TVP being the average typical parameter value in the population

\[\text{EPV} = \text{var}(TVP_i) \quad TVP_i = f(COV_i, \theta_{TVP}, \theta_{COV}) \]

\[PV = \sqrt{\text{var}(TVP_i) + \left(\sqrt{e^{\omega_P^2}} - 1 \times TVP \right)^2} = EPV + UPV \]

• **Change in EPV, UPV, PV**

\[\Delta UPV = UPV_{\text{full}} - UPV_{\text{reduced}} \]

\[\Delta EPV = EPV_{\text{full}} - EPV_{\text{reduced}} \]

\[\Delta PV = PV_{\text{full}} - PV_{\text{reduced}} \]
Results-RDSs

Introduction
Real data examples
SSEs
Conclusions

PAGANZ 2013
School of Pharmacy, The University of Queensland
Results-RDSs

- PV is changing
- Prazosin: $\Delta \text{UPV} > \Delta \text{EPV}$
- Docetaxel/Moxonidine: $\Delta \text{UPV} < \Delta \text{EPV}$
- Pefloxacin: $\Delta \text{UPV} \approx \Delta \text{EPV}$
- ΔOFV correlated with ΔUPV and ΔEPV
 - The higher ΔOFV, the higher ΔUPV & ΔEPV
SSEs

- 1-compartment intravenous (IV) bolus PK model (Nsim=100)
- 5 samples/subject
- combined RUV

\[c_{ij} = \frac{Dose}{V_i} \times e^{-\left(\frac{CL_i}{V_i}\right) \times t_j} \]

\[CL_i = \theta_{TVCL} \times e^{\eta_i,CL} \quad V_i = \theta_{TVV} \times e^{\eta_i,V} \]

- 4 covariates (AA, BB, CC, DD) simulated N(0, 0.09)
 - AA, BB uncorrelated
 - CC, DD correlated 0, 50, 90%
 - All covariates on CL
 - \(\theta_{CL_i} = \theta_{TVCL} \times e^{(\theta_{AA} \times AA_i + \theta_{BB} \times BB_i + \theta_{CC} \times CC_i + \theta_{DD} \times DD_i)} \times e^{\eta_i,CL} \)
SSEs

1. 4 normally distributed covariates AA, BB, CC, DD on CL

2. 2 normally distributed covariates and 2 non-normal distributed covariates
 • CC and DD arising from a t-distribution with heavy tails (DF=4)
 \[\eta_{t-distributed \, CC/DD} = \eta_i \times \left(1 + \frac{\eta_i^2+1}{4\theta_{DF}} + \frac{5\eta_i^4+16\eta_i^2+3}{96\theta_{DF}^2} + \frac{3\eta_i^6+19\eta_i^4+17\eta_i^2-15}{38\theta_{DF}^3} \right) \]
 • AA and BB being categorical (bimodal) covariates with values of either -0.21 or +0.21

3. 1 & covariates AA and CC on V

4. 1 & EE (a wrong covariate (N(0, 0.09))) included in the estimations instead of BB or DD

5. 1 & simulated with AA and BB on CL and CC and DD on V, but estimated with all four covariates on CL.
 • 50% correlation between CL and V (as in the standard scenario 1)
 • 0% correlation between CL and V
Results SSEs - PV

- True simulated PV on CL
- Estimated PV on CL with full true model
- Model with removed correlated covariates
- Model with removed uncorrelated covariates
- Reduced covariate models

Introduction Real data examples SSEs Conclusions

PAGANZ 2013
School of Pharmacy, The University of Queensland
Results SSEs - PV

- PV increases with
 - increasing correlation between covariates
 - increasing number of correlated covariates in the model
Results SSEs – $\Delta UPV/\Delta EPV$

- Decreased number of covariates included

- Model with 1 correlated covariate removed
- Model with 1 uncorrelated covariate removed
- Model with removed uncorrelated covariates
- Model with removed correlated covariates

90% correlation between CC and DD

Introduction
Real data examples
SSEs
Conclusions

PAGANZ 2013
School of Pharmacy, The University of Queensland
Results SSEs - ∆UPV

• ∆UPV increases with increasing correlation between covariates in the true full model
• ∆OFV greater if 2 correlated covariates are included compared to 2 uncorrelated covariates
• If only 1 of 2 correlated covariates included in the model ∆UPV small compared to uncorrelated covariates
Results SSEs - ΔEPV

- ΔEPV increases with increasing correlation between covariates in the true model
- If only 1 of 2 highly correlated covariates included in the model EPV can decrease (opposed to increase)
- ΔEPV > ΔUPV
Results SSEs

Correlations between criteria

- Correlation strength between ΔEPV, ΔUPV, ΔOFV
 - $\Delta OFV: \Delta PV < \Delta OFV: \Delta EPV < \Delta OFV: \Delta UPV$
 - $\Delta OFV: \Delta UPV$ stronger if one correlated covariate is excluded

<table>
<thead>
<tr>
<th>Correlation between CC and DD</th>
<th>0%</th>
<th>50%</th>
<th>90%</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta OFV: \Delta PV$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>no AA</td>
<td>-0.34</td>
<td>-0.50</td>
<td>0.66</td>
</tr>
<tr>
<td>no BB</td>
<td>-0.10</td>
<td>-0.26</td>
<td>0.67</td>
</tr>
<tr>
<td>no CC*</td>
<td>-0.15</td>
<td>-0.33</td>
<td>0.67</td>
</tr>
<tr>
<td>no DD*</td>
<td>-0.29</td>
<td>-0.48</td>
<td>0.70</td>
</tr>
<tr>
<td>no AA & BB</td>
<td>-0.34</td>
<td>-0.50</td>
<td>0.61</td>
</tr>
<tr>
<td>no CC & DD*</td>
<td>-0.23</td>
<td>-0.45</td>
<td>0.66</td>
</tr>
<tr>
<td>no covariates*</td>
<td>-0.32</td>
<td>-0.56</td>
<td>0.62</td>
</tr>
</tbody>
</table>

PAGANZ 2013
School of Pharmacy, The University of Queensland
Conclusions

• Differentiation between
 – better fit = statistical significance (signal in ΔOFV)
 – clinical significance (signal in ΔEPV/ ΔUPV)
• Generally: better fit results in greater ΔEPV and ΔUPV
• ΔEPV \neq ΔUPV
• PV does not stay the same!
• Monitoring ΔEPV may be beneficial
Questions/Comments

• Thank you for your attention